Posted on

Die-Cut Self Adhesive Shapes for Masking

Die Cut Self Adhesive

In today’s world, with a growing emphasis on hygiene and cleanliness, there is an increasing demand for products that offer protection against germs and contamination. One such product is custom die-cut self-adhesive shapes that are specifically designed for masking and protection. In this article, we will discuss what custom shapes are, their benefits, and how they can be used in various industries.

What are Custom Die-Cut Self Adhesive Shapes?

Custom die-cut self-adhesive shapes are precision-cut pieces of material that are designed to fit specific applications. They are made from a range of materials, including paper, vinyl, and polyester, and can be cut into any shape or size to fit a specific product or application.

These shapes are produced using a process called die-cutting, which involves using a machine to cut a shape out of a material. The machine uses a sharp blade, or “die,” to cut the material to the desired shape. The process is highly precise, and the shapes produced are consistent in size and shape, making them ideal for applications that require high levels of accuracy.

Benefits of Custom Die Cut Self Adhesive Shapes

There are many benefits to using custom die-cut shapes, including:

Customization

Custom shapes can be customized to fit any application. They can be cut into any shape or size, and can be made from a range of materials to fit specific requirements.

Precision

Die-cutting is a highly precise process, which ensures that the shapes produced are consistent in size and shape. This makes them ideal for applications that require high levels of accuracy.

Time and cost savings

Using custom die-cut shapes can save time and money compared to cutting shapes by hand. The process is highly automated, which means that large volumes of shapes can be produced quickly and efficiently.

Durability

Custom die-cut shapes are made from high-quality materials that are designed to be durable and long-lasting. This makes them ideal for applications that require high levels of durability and resistance to wear and tear.

Applications of Custom Die Cut Self Adhesive Shapes

Custom die-cut self-adhesive shapes can be used in a wide range of industries and applications, including:

Medical

In the medical industry, custom shapes can be used for a range of applications, including wound care, surgical dressings, and medical device manufacturing.

Automotive

In the automotive industry, custom die-cut shapes can be used for applications such as sound insulation, sealing, and gasketing.

Electronics

In the electronics industry, self-adhesive shapes can be used for applications such as shielding, grounding, and insulation.

Packaging

In the packaging industry, custom die-cut self-adhesive shapes can be used for applications such as tamper-evident seals, labels, and product protection.

Construction

In the construction industry, custom die-cut self-adhesive shapes can be used for applications such as sealing, insulation, and soundproofing.

Conclusion

Custom die-cut self-adhesive shapes are highly customizable and versatile products that offer a range of benefits, including precision, time and cost savings, and durability. They can be used in a wide range of industries and applications, from medical to construction, and are an essential component of many products that require protection against contamination and wear and tear.

FAQs

What materials can be used to make custom shapes?

Custom die-cut shapes can be made from a range of materials, including paper, vinyl, and polyester.

What industries use custom die-cut self-adhesive shapes?

Custom die-cut self-adhesive shapes are used in a wide range of industries, including medical, automotive, electronics, packaging, and construction. They are versatile products that can be customized to fit any application and are an essential component of many products that require protection against contamination and wear and tear.

How are custom die-cut shapes produced?

Custom die-cut self-adhesive shapes are produced using a process called die-cutting, which involves using a machine to cut a shape out of a material. The machine uses a sharp blade, or “die,” to cut the material to the desired shape. The process is highly precise, and the shapes produced are consistent in size and shape.

What are the benefits of using custom die-cut shapes?

The benefits of using custom self-adhesive shapes include customization, precision, time and cost savings, and durability. They can be customized to fit any application, are highly precise, can save time and money compared to cutting shapes by hand, and are made from high-quality materials that are designed to be durable and long-lasting.

Can custom shapes be used for medical applications?

Yes, custom self-adhesive shapes are widely used in the medical industry for a range of applications, including wound care, surgical dressings, and medical device manufacturing. They are made from high-quality materials that are designed to be safe and effective for use in medical applications.

In conclusion, custom self-adhesive shapes are versatile and highly customizable products that offer a range of benefits across a wide range of industries and applications. They are made using a highly precise and efficient process and are an essential component of many products that require protection against contamination and wear and tear. Whether used in medical, automotive, electronics, packaging, or construction applications, custom self-adhesive shapes are a reliable and effective solution for masking and protection.

Posted on

Rubber Mouldings: What They Are and How They Are Made

Rubber Mouldings

Rubber mouldings are an essential component in many industries, from automotive to construction. These mouldings are used for sealing, cushioning, insulating, and protecting various components, including windows, doors, and electrical systems. They come in different shapes and sizes, and they can be custom-made to fit specific applications.

In this article, we will explore what rubber mouldings are, how they are made, and the different types of rubber used in their production. We will also discuss the benefits and their applications in different industries.

What are Rubber Mouldings?

Components made of rubber that are used to seal, cushion, insulate, and protect different components. They are made by pouring liquid rubber into a mould that has the desired shape and allowing it to cure. Once the rubber has cured, it is removed from the mould, and any excess material is trimmed off.

Rubber mouldings can be made from different types of rubber, including natural rubber, synthetic rubber, and silicone rubber. The type of rubber used depends on the intended application, as each type of rubber has its unique properties.

How are Mouldings Made?

The production of rubber mouldings involves several steps, including mould design, material selection, mixing, moulding, and finishing.

Mould Design: The first step in the production of rubber mouldings is the design of the mould. The mould is designed based on the desired shape and size of the moulding.

Material Selection: The next step is the selection of the appropriate rubber material. The type of rubber used depends on the intended application, as each type of rubber has its unique properties.

Mixing: The rubber material is then mixed with various additives, such as accelerators, curing agents, and fillers, to improve its properties and performance.

Moulding: The mixed rubber material is then poured into the mould, and the mould is closed. The rubber is then allowed to cure, and the mould is opened to remove the finished rubber moulding.

Finishing: The finished rubber moulding is then inspected for quality, and any excess material is trimmed off. The rubber moulding may also be treated with a surface coating to improve its appearance and performance.

Types of Rubber Used in Rubber Mouldings

Rubber mouldings can be made from different types of rubber, depending on the intended application. The most common types of rubber used in rubber mouldings include:

  1. Natural Rubber: Natural rubber is made from the sap of rubber trees and is known for its excellent elasticity and resilience. It is commonly used in applications that require high tear and abrasion resistance, such as in the automotive industry.
  2. Synthetic Rubber: Synthetic rubber is made from petroleum-based chemicals and is known for its excellent chemical and weather resistance. It is commonly used in applications that require high temperature and chemical resistance, such as in the aerospace industry.
  3. Silicone Rubber: Silicone rubber is a synthetic rubber made from silicone and is known for its excellent heat and cold resistance. It is commonly used in applications that require high-temperature resistance, such as in the food and beverage industry.

Benefits

Rubber mouldings offer several benefits, including:

  1. Seal: Rubber mouldings are used to create a tight seal around components, preventing the entry of dirt, moisture, and other contaminants.
  2. Cushion: Rubber mouldings are used to cushion components, preventing damage from impact and vibration.
  3. Insulate: Rubber mouldings are used to insulate components, protecting them from heat, cold, and electrical currents.
  4. Protect: Rubber mouldings are used to protect components from damage, prolonging their lifespan and reducing maintenance costs.

Applications

Rubber mouldings are used in a wide range of industries and applications, including:

  1. Automotive: In the automotive industry to seal doors, windows, and trunks, insulate electrical systems, and cushion components.
  2. Construction: Rubber mouldings are used in the construction industry to seal windows and doors, insulate buildings, and protect components from weather and environmental factors.
  3. Aerospace: Used in the aerospace industry to seal aircraft windows and doors, insulate components, and protect against extreme temperatures and pressures.
  4. Medical: In the medical industry to create seals and gaskets for medical devices and equipment.
  5. Food and Beverage: They’re used in the food and beverage industry to create seals and gaskets for food processing equipment and containers.

Conclusion

Flexible mouldings are an essential component in many industries, providing sealing, cushioning, insulation, and protection to various components. They are made by pouring liquid rubber into a mould that has the desired shape and allowing it to cure. They can be made from different types of rubber, including natural rubber, synthetic rubber, and silicone rubber, depending on the intended application. They offer several benefits, including sealing, cushioning, insulation, and protection, and are used in industries such as automotive, construction, aerospace, medical, and food and beverage. By understanding the different types of rubber mouldings and their applications, you can choose the best for your specific needs.

Posted on

Manufacture silicone rubber parts | 10 Step Production Schedule

Manufacture Silicone Rubber Parts

Manufacture silicone rubber parts

Custom Parts (Moulded) Production Schedule

Producing custom made silicone parts is something we’ve been doing for decades. We manufacture silicone rubber parts both in the UK and overseas. It’s not just silicone rubber parts we have moulded either.

All our customers have very specific needs and to maintain our zero-returns record, AFAC operates a stringent set of rules to manufacture silicone rubber parts. As you’d expect there’s a formal process we run through to ensure quality of service and solution.

From initial enquiry through to managing ongoing volume needs, AFAC will satisfy, and attempt to exceed, your expectations.

1. Parts defined

  1. It’s perfectly normal for us to expect to sign NDAs at this point.
  2. Whether you wish to manufacture silicone rubber parts that are a modification of an existing design or require a design creating from scratch, AFAC will assist you in proposing a solution to suit your requirement.
  3. To manufacture silicone rubber parts it is useful at this stage to provide .STEP files of the application required to AFAC’s design team for analysis.
    Est. 3-4 days.

2. Drawing created

  1. Our design team will create the necessary files for production to manufacture silicone rubber parts.
    Est. 48 hrs

3. Drawing approved

  1. You will be provided with PDFs clarifying design and dimensions.
  2. It’s important to check all details at this stage to ensure design meets requirements.
    Est. 48 hrs – Customer dependent

4. Drawing sent to production

  1. Acknowledgement of drawing receipt from production.
    24 hrs

5. Prototype tool created

  1. Initially a single impression prototype tool is machined from steel.
  2. Once tool is machined, prototype parts are produced to enable customer approval.
    5 days

6. Prototype parts received

  1. With production being on the other side of the world, you’ll have to wait for a plane to arrive before you receive your prototype parts.
  2. AFAC inspection takes place before forwarding the parts to you.
    5-7 days

7. Prototype parts approved

  1. You’ve now got your prototypes in your hand.
  2. These are fully testable prototype parts. You can take your time to ensure the product is fit for purpose.
    Est. 7-14 days – Customer dependent

8. Production tool created

  1. Ok, the prototypes worked, so now we need your approval.
  2. You’ll have signed the drawing off and paid for your goods in full at this point.
  3. Your multi – impression production tool is then machined from steel.
    21 days

9. Production parts manufactured

  1. Tool made, parts coming out of the mould in volume.
  2. You will have specified colour and shore value earlier in the process.
    21-28 days

10. Shipping

  1. You have a choice here but with choice comes price. It all comes down to how urgent your parts are.
  2. For volume customers we normally recommend only using air to satisfy the 8-10 week requirements until sea shipment arrival.
    Air – 5-7 days
    Sea – 8-10 weeks

Supporting quality manufacturing and metal finishing companies requiring price conscious precision masking supplies. Leading companies from the Automotive, Aerospace, Switchgear & Lighting sectors choose AFAC for reliability, service and price.

Founded over 35 years ago, AFAC has designed, adapted and developed substantial ranges of standard parts supported by a comprehensive bespoke bureau. Engineering backgrounds and family roots give AFAC that competitive edge on service.

Posted on

What’s different about rubber moulding and rubber extrusion?

What’s the difference between a moulding and an extrusion?

The differences between rubber moulding and rubber extrusion are really simple. The are different manufacturing methods for producing shaped rubber components.

The easiest way to know the difference between extrusions and mouldings is simple.

[twocol_one]

Rubber extrusions

Extrusions are moulded items such as tubes which can be produced in endless lengths. Extrusion involves forcing uncured rubber through a shaped tool and curing immediately afterwards. Extruding rubber is like turning a tap on that produces whatever 2 dimensional profile you require in continuous length.

Tubing is by far the most common type of extrusion but extrusions are commonly found in seals and

Shop for extrusions

[/twocol_one] [twocol_one_last]

Rubber Mouldings

Mouldings are the opposite. Mouldings are 3 dimensional shapes. Mouldings are produced by forcing uncured rubber into a mould with no exit. The mould is then emptied and the cycle repeated. Mouldings are always numbers of parts produced.

Plugs, caps, o-rings, seals & gaskets are more common mouldings used in industrial applications.

Shop for mouldings

[/twocol_one_last]

 

 

 

Posted on

Creating bespoke silicone rubber moulding for manufacturing case study

Bespoke Silicone Rubber Moulding

Case Study: Creating a bespoke silicone rubber moulding to speed up manufacturing

Sometimes, when a client comes to us with a unique problem that needs solving, we create a bespoke silicone rubber moulding for them. Then, having created a solution to the problem, we realise that there may be other customers facing the same problem. The result? A new product line available to all our clients.

This scenario is precisely what happened when we were approached by an international client who had a finishing problem. The company in question is a leader in secondary power distribution solutions with an outstanding pedigree. The business specialises in high-performance medium voltage switchgear for industrial, utility and commercial applications. Incredibly, they have more than 100 years’ experience in enabling the safe and reliable distribution of energy all over the world.

The problem they consulted us about was this: they were looking for a cap that would protect the threaded ends of studs during media blasting to remove oxides and scale from their steel assembly. The cap would also need to act as a mask during electro-static powder coating. However, the caps they were using couldn’t withstand the punishment of shot blasting.

It was time for the AFAC team to step in. We designed a beefed-up version of the T-Cap. It has heavier walls and it doesn’t have the lip feature that the standard caps have. The reason for omitting this is that the blasting process is so fierce it tends to blast the cap completely off the stud. The resulting design for the new cap has increased wall thickness, no lip and a modified top flange to withstand the strain of being pulled off. As an extra precaution, the bore of the cap has also been reduced to give an increased friction fit—a further measure to help it remain in place during blasting.

The result was a winner! The new cap is able to withstand the rigours of blasting and the customer has requested a range of similar caps to use with different sizes and lengths of studs. These robust caps are now also available to our other customers. So one client’s problem resulted in all our clients gaining a new product!

Posted on

Manufacturing using 3D Printing – Roll on the Revolution!

How will manufacturers benefit from 3d printing?

Most of us have known about the advent of 3D printing for a while now. But what the inventors haven’t so far been able to show us is how its application is going to revolutionise certain industrial manufacturing processes. However, forward thinking businesses, such as AFAC, are starting to explore its potential—and now that it’s possible to 3D print in rubber, we can see a great future ahead!

3D printing – what is it and how does it work?

If you’ve seen a 3D printer at work, it’s an extraordinary sight to behold. A template in the form of a computer generated .cad file gives the printer its template. Press ‘PRINT’, and a stream of plasticising powder is fused with a bonding element to form a 3D plastic reproduction of the template. Furthermore, the technology has the ability to recreate complex objects, complete with moving parts—and all to an incredible degree of accuracy. But it’s not just plastic creations that can issue forth from the latest 3D printers. New printers have been unveiled that can create complicated multi-coloured sweets from sugar and chocolate. Just what the world has been waiting for!

To see an amazing 3D print out, take a look at this QI clip.

New 3D printing applications in manufacturing

However, more useful applications might not have the novelty value of spun sugar but they may revolutionise manufacturing as we know it. For AFAC, the eureka moment came when Ryan Mullins discovered that 3D printing in rubber is also available.

Rubber? What’s the big deal?

To date, most 3D printing has used plastic. For AFAC, plastic prototypes are not ideal for demonstrating a wide range of products which are generally made from rubber. The rigid nature of plastic doesn’t adequately show how the rubber and silicone plugs and covers will perform.

However, using a 3D printer to create rubber prototypes represents a game-changer for two reasons:

  • For AFAC, the properties of rubber are an integral aspect to the product design and effectiveness of proving concept for the vast majority of its products. In future, we will be able to utilise 3D rubber printing to produce rubber items with varying shore values as a way to provide the fastest and most efficient prototyping service for our clients. Lead times in bespoke product development will be slashed.
  • As 3D printing technology advances, costs will fall and its use will become widespread in all areas of mass production. 3D printing in rubber will reduce the cost of custom mouldings production. Tooling costs will exchanged for cheaper printer set-up charges and bespoke rubber prototypes will become available overnight. We’re not there yet, but with advances in the technology to increase the variety of materials and colours available, we will be soon.

3D Printing for designers and product development

For product designers and developers, this represents a massive leap forward. It’s conceivable that one could move from idea to full production in just a matter of hours. And with your own in-house 3D printing facilities, fears about product protection and pirating simply evaporate.

The UK has built its reputation on the extraordinary skill of its niche designers and product developers. 3D printing will hopefully allow more of the subsequent manufacturing to be based once again on British soil. And hopefully, AFAC will be one of the companies leading the way.

Posted on

Solving customer problems with bespoke design and production of silicone rubber mouldings.

The Problem

When one of our customers, manufacturing parts for a military vehicle, had a masking problem, they called on A.F.A.C.’s technical team to help them out. The problem they had was with a bracket that supported military radio equipment. Continue reading Solving customer problems with bespoke design and production of silicone rubber mouldings.